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§1. Supplemental Figures

§1.a. Supplementary Figure 1. Zipf plot.

Figure S1. Zipf plot. Frequency of individual unique words vs. rank in the non-
repeated natural movie experiment; log-log scale. The black line is the power law best
fitting the data excluding the silent state and fewer than 3-count words (exponent =
−0.99; 95% CI = [−1.0,−0.98]). The data therefore approximates a Zipf law, which is
defined by frequency ∝ 1/rank.
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§1.b. Supplementary Figure 2. Relation between number of modes and cells.

Figure S2. Number of modes as a function of number of cells. We generated
random subsets of 30, 40, . . . , 150 cells such that each subset was contained within the
next larger subset (i.e., a random 30-cell subset was chosen, then 10 random additional
cells were adjoined to generate the 40-cell subset, and so on). For each subset, we fit
the model and identified the optimal number of modes by maximizing the test likelihood
in 2-fold cross-validation, as described in the main text. We repeated this procedure 10
times, with different randomly-generated cell subsets. Dots = average number of modes
over the 10 repetitions, error bars = ±1 standard deviation. Line = best linear fit. The
scaling of mode number with cell number is approximately linear with a small slope (less
than unity).
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§2. Supplemental Experimental Procedures

§2.a. Fitting a simplified model. Before describing the full methodology of fitting the
hidden Markov model described in the main text, we will first build intuition by presenting
a simpler, special case of the full model. This model is a mixture model (so time bins are
statistically independent, unlike in the hidden Markov model) with independent emission
distributions (it lacks the tree-based interneuronal correlations included in the full model).
The algorithm for fitting this model is parallel to that for the full model, with some steps
simply being more elaborate in the full model. This model is highly computationally
efficient to fit, and did a reasonably good job of accurately capturing the statistics of our
data (though it was improved upon by the full model reported in the paper).

The independent mixture model assumes that the population responses across time bins
t = 0...T , each denoted by {σi(t)}, are independent across time. Specifically, it formulates
that the probability of a single population response is given by:

Pmix

(
{σi(t)}

)
=

modes∑
α

wαQα
(
{σi(t)}

)
(1)

with independent emission distribution Qα,

Qind
α

(
{σi(t)}

)
=

cells∏
i

(
miα

)σi(1−miα

)(1−σi). (2)

The model parameters are therefore the mode probabilities, wα and the mode-dependent
mean firing probability of each neuron, miα. Models of this form may be fit by the
expectation-maximization (EM) algorithm, which iteratively alternates an expectation step
(E-step) with a maximization step (M-step). Each iteration of the E-step and M-step may
be shown to increase the likelihood of the model.

§2.a.1. The E-step. In the E-step, we use the currently-estimated parameters to compute
the posterior probability over the mode in each time bin, conditioned on the observed data:

P
(
αt | {σi(t)}

)
=

wαtQαt({σi(t)})∑
β wβQβ({σi(t)})

. (3)

§2.a.2. The M-step. We then use the estimated probability of modes in each time bin to
take weighted averages over the time bins that update the model parameters. For example,
the overall mode probability wα is simply set to the average of mode α’s probability in
each time bin:

wα ←
1

(T + 1)

T∑
t=0

P
(
αt | {σi(t)}

)
. (4)

Likewise, the mode-dependent spiking probabilities are updated in an analogous fashion:

miα ←
T∑
t=0

σi(t)P
(
αt | {σi(t)}

)
/

T∑
t=0

P
(
αt | {σi(t)}

)
. (5)
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These two steps are then repeated for a fixed total number of iterations.
In deriving the full model, we generalized the above by adding temporal correlations in

the form of probabilistic transitions between modes in adjacent time bins. This led to a
more complex set of steps for computing the posterior distribution over modes in the E-
step, as well as a new step for updating the transition probabilities in the M-step. We then
added correlation between cells into the emission distributions Qα({σi(t)}), which added
further complexity to the M-step. Nevertheless, the overall EM form of the algorithm was
preserved, as was the intuition that the M-step involves estimating parameters by taking
weighted averages, weighted by the posterior distribution over modes.

As discussed in the main text, the full model better captured pairwise correlations
between cells, and also captured temporal correlations (which were completely ignored
by the independent mixture model). We now describe the algorithm for fitting the full
hidden Markov model model with mode-dependent correlations.

§2.b. Maximum likelihood estimation of model parameters. We define the hidden
Markov model (HMM) and introduce our notation in the main text. Briefly, we assume
M distinct hidden modes, labeled by α = 1 . . .M . For each mode, there is an emission
distribution over the binary pattern {σ} in a given time bin, Qα({σi(t)}) = P ({σi(t)} |αt).
Finally, transitions between modes are parameterized by the matrix T (α → β) =
P (βt |αt−1) and the distribution over modes in the initial time bin is denoted w0(α) =
P (α0 = α).

To fit the model we apply the Baum-Welch algorithm. This method alternates two steps:
an expectation step (E-step) and a maximization step (M-step). These are alternated for
a fixed total number of iterations.

§2.b.1. Parameter initialization. We set the initial transition matrix to a uniform
distribution in each column, and w0(α) to a uniform distribution. All tree edges were
initialized to zero. The remaining parameters of the emission distributions are the mode-
dependent firing probabilities for each mode and cell. It is important to choose these
differently for each mode, because if two modes have identical initial parameters the fitting
algorithm will never separate them. At the same time, if the initial values of any modes
are too extremely different from the data, compared to other modes, they will have their
probability driven to zero and effectively drop out of the model. We therefore generated the
initial mean vectors randomly, but with only a small amount of variability. Specifically,
each component of each mean vector was drawn randomly and independently from the
uniform distribution over [0.45, 0.55].

§2.b.2. The E-step. In the E-step, we use the currently-estimated parameters to calculate
the following posterior probability distributions over mode identities at each time bin t:
P (αt | {σ}T0 ) and P (αt, βt−1 | {σ}T0 ). Here, {σ}T0 represents the N×(T+1) matrix consisting
of all of the observed spiking data, from time bins 0 through T . That is, in terms of the
notation used in the main text, {σ}T0 ≡

(
{σi(0)}, · · · , {σi(t)}, · · · , {σi(T )}

)
. We may
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simplify the calculation of these quantities by application of Bayes’ rule, giving:

P1(α, t) ≡ P (αt | {σ}T0 ) = F (α, t)B(α, t)/Z1(t) (6)

P2(α, β, t) ≡ P (αt, βt−1 | {σ}T0 ) = F (β, t− 1)B(α, t)Qα({σ}t)T (β → α)/Z2(t) (7)

Here, we have introduced the forward and backward filtering distributions F (α, t) and
B(α, t):

F (α, t) ≡ P (αt, {σ}t0) (8)

B(α, t) ≡ P ({σ}Tt+1 |αt) (9)

And Z1(t), Z2(t) are simply normalizing constants. The E-step thus reduces to calculation
of the forward and backward functions. Further use of Bayes’ rule yields iterative equations
for these quantities:

F (α, t) = Qα({σi(t)})
modes∑
β

T (β → α)F (β, t− 1) (10)

B(α, t) =

modes∑
β

Qβ({σi(t+ 1)})T (α→ β)B(β, t+ 1) (11)

Together with the boundary conditions, F (α, 0) = Qα({σ}0)w0(α) and B(α, T ) = 1, these
equations allow F to be computed in a forward pass through all the data (Eqn. 10) and
B to be computed in a backward pass (Eqn. 11). As an implementation detail, we note
that naive application of these equations is numerically unstable, as they tend to drive
F and B toward zero. We therefore instead compute normalized versions of F and B,
applying the normalization after each time bin. These α−independent normalizing factors
are ultimately unimportant, as they may simply be absorbed into Z1, Z2 defined above.

§2.b.3. The M-step. After computing the posterior probabilities over mode identity, we
may define the following function, similar to a log-likelihood, which is maximized in the
M-step:

L ≡

(
modes∑
α

T∑
t=0

P1(α, t) logQα({σi(t)})

)
+

modes∑
α,β

T∑
t=1

P2(α, β, t) log T (β → α) +

modes∑
α

P1(α, 0) logw0(α)


≡ L1 + L2

(12)

The parameters T (β → α) and w0(α) only enter into L2, which may be analytically
optimized subject to the normalization constraints

∑
αw0(α) = 1 and

∑
α T (β → α) = 1.

This yields the following update rules for these parameters:

T (β → α)←
T∑
t=1

P2(α, β, t)/

modes∑
α

T∑
t=1

P2(α, β, t) (13)

w0(α)← P1(α, 0) (14)
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The remaining parameters define the emission distributions Qα, and are updated by
maximizing L1. Our model takes the form,

Qtree
α

(
{σi(t)}

)
=

cells∏
i

pα(σi)

edges∏
〈i,j〉

pα(σi, σj)

pα(σi)pα(σj)
(15)

The parameters of Qα are, therefore, the choice of tree topology (i.e., the set of edges
〈i, j〉), together with the pairwise distribution Pα(σi, σj) on each tree edge and the
single-cell distribution Pα(σi) for each cell (these are actually somewhat redundant, since
Pα(σi) =

∑
σ Pα(σi, σj = σ) wherever i and j are connected by a tree edge). To identify the

parameters, we must first choose the distributions Pα(σi) and Pα(σi, σj), and then choose
the tree topology itself for each α. For the first part, L1 may be explicitly maximized for
any fixed choice of tree edges. This yields,

Pα(σi = σ)←
T∑
t=0

P1(α, t)δ(σi(t), σ)/

T∑
t=0

P1(α, t) (16)

Pα(σi = σ, σj = σ′)←
T∑
t=0

P1(α, t)δ(σi(t), σ)δ(σj(t), σ
′)/

T∑
t=0

P1(α, t) (17)

Here, δ(σ, σ′) = 1 if σ = σ′, and is zero otherwise.
Finally, we must choose the tree edges. We first apply Eqn. 19 for all cell pairs. Then,

we note that L1 may be expanded as follows:

L2 =

modes∑
α

(
T∑
t=0

P1(α, t)

)edges∑
〈i,j〉

Iαij −
cells∑
i

Sαi

 , (18)

Where Iαij ≡
∑

σ,σ′ pα(σi = σ, σj = σ′) log
pα(σi=σ,σj=σ

′)
pα(σi=σ)pα(σj=σ′)

is the mutual information

between tree-adjacent cells i and j, under the distribution Qα, and Sαi ≡ −
∑

σ pα(σi =
σ) log pα(σi = σ) is the entropy of cell i. The only term in Eqn. 18 that depends on the
tree topology is

∑
〈i,j〉 I

α
ij , and so choosing the tree edges for each α is equivalent to solving

the max-spanning-tree problem of finding a tree that maximizes the sum of weights along
its edges. Here, the weight for edge 〈i, j〉 is Iαij . We find this tree by applying Kruskal’s

algorithm, which (in brief) proceeds by iteratively selecting the edge with highest weight,
out of all edges that would not form a loop when added to the currently-estimated tree.

We summarize this section with pseudo-code for the fitting algorithm developed above
(the complete algorithm adds to this a regularization step described below and in the main
text Methods).
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1: Initialize parameters

2: for iter = 1 . . .max iter do

3: . Begin E-step

4: F (α, 0)← Qα({σi(0)})w0(α) . Begin forward pass

5: for t = 1 . . . T do

6: F (α, t)← Qα({σi(t)})
∑

β T (β → α)F (β, t− 1)

7: F (α, t)← F (α, t)/
∑

α F (α, t)

8: B(α, T )← 1 . Begin backward pass

9: for t = T − 1 . . . 0 do

10: B(α, t)←
∑

β Qβ({σi(t+ 1)})T (α→ β)B(β, t+ 1)

11: B(α, t)← B(α, t)/
∑

αB(α, t)

12: P1(α, t)← F (α, t)B(α, t)
13: P1(α, t)← P1(α, t)/

∑
α P1(α, t)

14: P2(α, β, t)← F (β, t− 1)B(α, t)Qα({σi(t)})T (β → α)
15: P2(α, β, t)← P2(α, β, t)/

∑
α,β P2(α, β, t)

16: . Begin M-step

17: w0(α)← P1(α, 0)

18: T (β → α)←
∑T

t=1 P2(α, β, t)/
∑

α′
∑T

t=1 P2(α
′, β, t)

19: pα(σi = σ, σj = σ′)←
∑T

t=0 P1(α, t)δ(σi(t), σ)δ(σj(t), σ
′)/
∑T

t=0 P1(α, t)

20: Iαij ←
∑

σ,σ′ pα(σi = σ, σj = σ′) log
pα(σi=σ,σj=σ

′)
pα(σi=σ)pα(σj=σ′)

21: {〈i, j〉}α ← kruskal(Iα) . Get tree edges

§2.c. Alternative parameterization of the tree distribution. In this section, we
discuss the emission distributions; since these results hold for each mode individually we
will simplify the previous notation by dropping the α sub- and superscripts on various
quantities. The distribution,

Qtree
α

(
{σi(t)}

)
=

cells∏
i

pα(σi)

edges∏
〈i,j〉

pα(σi, σj)

pα(σi)pα(σj)
(19)

may be re-parameterized as an explicit exponential family distribution:

Qtree
α

(
{σi(t)}

)
= exp

Γ +

cells∑
i

hiσi +

edges∑
〈i,j〉

Jijσiσj

 (20)

This latter form is more useful for certain calculations, including the regularization scheme
that will be discussed below. The sum over 〈i, j〉 runs over tree neighbors; in other words,
the matrix Jij is nonzero only on the tree edges. The parameterization that accomplishes
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this transformation is:

Γ =
cells∑
i

log pi(0) +

edges∑
〈i,j〉

log
pij(0, 0)

pi(0)pj(0)
(21)

hi = (νi − 1) log
pi(0)

pi(1)
+
∑

j∈N (i)

log
pij(1, 0)

pij(0, 0)
(22)

Jij = log
pij(0, 0)pij(1, 1)

pij(0, 1)pij(1, 0)
, (23)

where N (i) denotes the set of cells that are direct neighbors of i on the tree, and νi ≡ |N (i)|
is the degree of cell i.

We introduce further notation that will prove useful below: mi ≡ pi(1) and Cij ≡
pij(1, 1). The full distributions pi(σi), pij(σi, σj), and therefore all the parameters Γ, hi, Jij ,
may be expressed in terms of these quantities. In particular, we have for Jij :

Jij = log
(1−mi −mj + Cij)Cij
(mi − Cij)(mj − Cij)

(24)

From this, we can obtain a relationship that will be useful below:

sgn Jij = sgnCov(σi, σj), (25)

where Cov(σi, σj) = Cij − mimj and it is implicit that the equation only holds for i, j
connected by a tree edge.

Finally, we note that the maximum likelihood inference of the parameters hi, Jij (Γ is a
normalization constant that may be expressed in terms of the other parameters) maximizes
the quantity:

L = Γ(h, J) +

cells∑
i

him̃i +

edges∑
〈i,j〉

JijC̃ij , (26)

where m̃i and C̃ij are empirical averages of σi and σiσj , respectively. Returning to

the notation of the previous section, m̃α
i =

∑
t P1(α, t)σi(t)/

∑
t P1(α, t), and C̃αij is the

analogous weighted average over σiσj . This turns out to be maximized when mi = m̃i and

Cij = C̃ij ; h, J may then be recovered by using Eqns. 22, 23.

§2.d. L1 regularization. To prevent overfitting, we imposed a regularization that
penalizes the addition of tree edges. Since Jij is nonzero only for tree edges, an L1

regularization that encourages Jij to be zero accomplishes this objective. Therefore, we
replaced the above maximization of L with the maximization of L − η

∑
ij |Jij |, with

η ≥ 0 the regularization parameter. The optimization criterion becomes mi = m̃i and
Cij = C̃ij − η sgn Jij . Applying Eqn. 25, the latter condition may be solved to yield:

Cij =


C̃ij − η, C̃ov(σi, σj) > η

C̃ij + η, C̃ov(σi, σj) < −η
m̃im̃j |C̃ov(σi, σj)| ≤ η

(27)
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In other words, the tree edge weights are closer to zero than they would be without the
regularization, and cells with too-small covariance are not connected at all. In order to
incorporate the regularization step into the fitting algorithm, we must modify line 19 of
the pseudo-code algorithm by first calculating mα

i for all cells and Cαij for all cell pairs,

using Eqn. 27, and then using these parameters to obtain pα(σi, σj).

§2.e. Computation of the correlation matrix in the tree model. The tree emission
distribution is explicitly parametrized by the pairwise distribution over tree-adjacent
neurons. However, neurons that are not directly connected will still be correlated, due
to the indirect interaction mediated by those neurons that they are mutually connected to.
In this section we derive the simple formula for computing the mode-dependent correlation
coefficient between arbitrary neuron pair i and j. As above, we suppress the mode index on
various quantities; everything we do in this section applies within each mode independently.

Within each mode, any pair of neurons will be connected by a unique chain of tree
edges (to handle the case of trees that are not fully-connected, we allow inclusion of “null”
zero-weight edges in the chain). We denote the set of tree edges in this chain by P(i, j).
Let j∗ represent the neuron which is directly adjacent to j along the chain connecting i
to j; i.e. 〈j, j∗〉 ∈ P(i, j). Then neurons i and j are conditionally independent given j∗:
p(σj |σi, σj∗) = p(σj |σj∗). We may use this to simplify the equation for the covariance
between i and j:

Cov(σj , σi) =
∑
σi,σj∗

E [(σj −mj) |σj∗] (σi −mi)p
(
σj∗ , σi

)
= (E [(σj −mj) |σj∗ = 1]−E [(σj −mj) |σj∗ = 0])

∑
σi,σj∗

σj∗(σi −mi)p
(
σj∗ , σi

)
(28)

The first factor, the difference of conditional expectations, turns out to equal
Cov(σj ,σj∗ )
V ar(σj∗ )

;

it is simple to compute because j and j∗ are directly connected. The second factor, the
sum over σi, σj∗ , is in fact Cov(σj∗ , σi). We therefore have derived a recursive formula for
the covariance:

Cov(σj , σi) =
Cov(σj , σj∗)

V ar(σj∗)
Cov(σj∗ , σi) (29)

Dividing both sides by
√
V ar(σj)V ar(σi) we obtain a further simplification:

ρ(σj , σi) = ρ(σj , σj∗)ρ(σj∗ , σi), (30)

where ρ(σi, σj) is the correlation coefficient: ρ(σi, σj) ≡ Cov(σi,σj)√
V ar(σi)V ar(σj)

. Finally, we may

iterate the above rule to obtain:

ρ(σj , σi) =
∏

〈k,l〉∈P(i,j)

ρ(σk, σl). (31)

That is, the correlation coefficient between any two neurons is simply the product over the
correlation coefficient associated with each tree edge along the chain directly connecting
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the two neurons. Interpreting the number of links in this chain as a measure of distance
between the two neurons, this result implies that correlations fall off exponentially with
distance. In this sense, the tree model only allows “weak” correlations.

§2.f. Maximizing the posterior over mode sequences. After fitting the hidden
Markov model, we would like to be able to identify the most probable mode sequence
α̂t = argmaxP (αT0 | {σ}T0 ), where the probability distribution here represents the posterior
over the full mode sequence, conditioned on all the data. We solve this by the Viterbi
algorithm, which is standard, but we review it here for completeness.

The Viterbi algorithm involves computation of the function µ(αt, t) ≡ max
αt−1
0

P (αt0, {σ}t0).

This is done recursively through a forward pass over the data, by applying the iterative
formula:

µ(α, t) = Qα({σi(t)}) max
β

T (β → α)µ(β, t− 1). (32)

The recursion is initialized by µ(α, 0) = maxQα({σi(0)})w0(α). During the same forward
pass, we store a function α̂(αt, t− 1), defined by:

α̂(αt, t− 1) = argmax
αt−1

T (αt−1 → αt)µ(αt−1, t− 1). (33)

This function will give the most probable value for αt−1, once we know the most
probable αt. The full sequence is therefore obtained in a backward pass by the rules
α̂T = argmaxµ(αT , T ), α̂t = α̂(α̂t+1, t).
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§3. Characterizing Mode Spatial Receptive Fields

For each fit Tree HMM latent mode α, the corresponding receptive field (RF) was mapped
by computing the “mode-triggered average” (MTA) stimulus obtained in the presence of
a white noise checkerboard stimulus. That is, by averaging all stimuli preceding a time
bin in which the mode was active. For analysis of RF shape, the spatial component of the
MTA was extracted using singular value decomposition (SVD) across time. Each mode
spatial RF was smoothed by convolving with a two-dimensional Gaussian kernel having
a standard deviation of 1 checker, and interpolated by a factor of 4. The center of each
mode’s spatial RF profile was identified as the spatial position corresponding with the
extremal (i.e. largest absolute) RF value. To further mitigate the effects of noise, all of
the following analyses were then restricted to the 29× 29 interpolated checker region (i.e.
7.25 × 7.25 in original checker units) centered on the spatial RF center. For all modes,
this window was sufficiently large enough to encompass the border, estimated visually and
then verified post-hoc, of the region contiguous around the RF center outside of which RF
magnitudes were below approximately 70% of the extremal value evoked in the RF center.

§3.a. Noise & oriented dipole analysis. For each of the 50 Tree HMM modes, we fit a
2D Difference of Gaussians (DoG) model via the method of least squares (using the genetic
algorithm as our optimization algorithm) to the corresponding smoothed spatial RF, given
by:

fDoG(~x) = K1 · g(~x; ~µ1,Σ1)−K2 · g(~x; ~µ2,Σ2) (34)

where ~x ∈ R2, the constant scaling parameters K1,K2 ∈ (−∞,∞), g denotes the bivariate
Gaussian distribution, ~µ1 and ~µ2 denote the means, and Σ1, Σ2 denote the covariance
matrices of the respective Gaussian distributions. Note that we fit an unconstrained form
of the DoG model in that we allowed the means to be spatially shifted, i.e. we allowed for
~µ1 6= ~µ2, and placed no other constraints on the parameters. For each mode spatial RF, we
fit the above 2D DoG model a total of 100 times, using different randomly chosen initial
parameter values each time. We then chose the best model fit as the one which minimized
the mean squared error (MSE), and used this best model fit for subsequent analyses.

§3.a.1. Noise analysis. We first wanted to identify if there were any modes for which
the spatial RF was predominantly noise, so that we could exclude these from subsequent
analyses. By “predominantly noise”, we mean that the spatial RF lacks the fundamental
property of containing at least one extremum with an amplitude significantly above the
baseline noise level, which we would expect a “good” spatial RF to exhibit. Note that
the unconstrained 2D DoG model can capture both the case of a spatial RF having one
extremum, and the case in which it has two extrema. If the 2D DoG model is a good fit
in the sense that the χ2 value equals the number of degrees of freedom, ν, and the spatial
RF for each point ~x is independently distributed according to a normal distribution with
the same noise variance - i.e. each yj ∼ N (µj , σ

2
f ), where yj denotes the observed MTA

value at point ~xj - then:
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σ2f =
1

ν

∑
j

(yi − fDoG(~xj ; θ))
2 ≡ MSE (35)

where θ denotes the model parameters fit via least squares. That is, under these
assumptions we can estimate the variance of the noise as equal to the mean squared error.

Based on this idea, we excluded a mode spatial RF if the amplitude of its greatest
extremum did not exceed the estimated standard deviation of the noise for that mode, σf ,
by at least a factor of Θ (where in practice we chose Θ = 4.5). That is, any mode α which

had |yα|σf
< Θ was excluded, where yα denotes the largest extremum of the observed spatial

RF for mode α. As seen in panel B of S3 Fig, one of the 50 modes was excluded based on
this criterion: mode 35. This result was consistent with visual inspections.

§3.a.2. Oriented dipole analysis. Next, we wanted to determine whether there were any
mode spatial RFs which could be characterized as an oriented dipole. Qualitatively, a
dipole RF has the fundamental characteristic of containing two extrema of opposite sign,
where both extrema are significant. To quantify the presence or absence of this property,
we compared the values of the two largest extrema of the best-fit DoG model. We will
denote these values by V1 (for the value of the extremum having the largest amplitude) and
V2 (for the value of the extremum having the second-largest amplitude).1 We then classified

a given mode α as having a dipole-type spatial RF if its corresponding ratio V2
V1
< Φ < 0,

where in practice we chose the threshold value Φ = −0.4. Note that in practice, for ease of
visualization when compiling the global results over all 49 non-noise modes (shown in panel
C of S3 Fig), we normalized each mode’s spatial RF as modeled by the fit DoG model.
Specifically, each spatial RF value was rescaled as:

Rescaled fDoG (~xj ; θ) =
fDoG (~xj ; θ)∑
k |fDoG (~xk; θ) |

(36)

where | · | denotes the absolute value. Note that we chose this form of rescaling so as to
preserve the relative distances between the negative and positive outliers.

As seen in panel C of S3 Fig, the above-described criterion yielded three modes (mode
16, 18 and 24) with identified dipole-type RFs. The corresponding fit DoG model (not
normalized) for each of these three identified dipole-type modes is shown in Fig S3D. Note
that although we did not explicitly stipulate any criterion that the two extrema should
be spatially offset in our above identification procedure, we observed that for each of the
three identified dipole-type mode RFs, the means of the two Gaussians of the best-fit DoG
model were spatially separated (Fig S3D).

The remaining modes which did not satisfy the above ratio criterion were classified as
having monopole spatial RFs. For these modes, in order for the best-fit DoG model to
produce a monopole-type RF profile, either the means of the two Gaussians were nearly

1Note that if the two bivariate Gaussians do not significantly overlap and K1,K2 6= 0, then the values
of the two largest extrema will be fDoG(~µ1) = K1 · g (~µ1; ~µ1,Σ1)−K2 · g (~µ1; ~µ2; Σ2) and fDoG(~µ2).
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identical as in a center-surround organization, or the second Gaussian merely contributed
a negligible “noise blip”.

§3.b. Intersection & union analysis for monopole mode RFs. For the remaining 46
modes which had monopole spatial RFs, we next investigated how these mode spatial RFs
compared to those of the individual retinal ganglion cells (RGCs). To quantify the size of
mode and individual RGC spatial RFs, we first fit a single 2D Gaussian to each smoothed
spatial RF profile via nonlinear regression (i.e. using iterative least squares estimation).
As with the dipole model fits, for each mode and RGC, nonlinear regression was performed
100 times using different randomly-chosen initial parameter values, and the best-fit 2D
Gaussian was chosen as the one with minimum MSE. An example best-fit 2D Gaussian is
shown in S4 Fig (panel A).

We then measured the RF radius for each mode and each individual ganglion cell, which
we define as the semi-major axis length of the 95% confidence interval ellipse of the best-fit
2D Gaussian. Under the null hypothesis of independent visual signaling, one would expect
the RF of a firing pattern to approximate the union of the individual cells’ RFs [1]. If
we think of a Tree HMM mode as a type of definition of neural ‘codeword’ corresponding
with a firing pattern, then we would likewise expect the mode RFs to approximate the
weighted union of the individual RGCs which contribute to the mode. Based on this idea,

we compared the actual RF radius for each mode α, which we denote by r
(real)
α , to the

radius expected under the null hypothesis of independent visual signaling:

r(null)α ≡
∑N

i=1mi,α · ri∑N
i=1mi,α

(37)

where ri denotes the radius for cell i, and mi,α denotes cell i’s mode-dependent firing
probability. Note that Eq. 37 is a generalization (to the case where the weights mi,α are

heterogeneous) of the null model formulation used in Ref. [1]. A scatter plot of r
(real)
α vs.

r
(null)
α for each mode α is shown in panels B and C of S4 Fig.

The error bars shown in panels B and C of S4 Fig represent the standard deviation

associated with each r
(real)
α value, which we denote by σrα . This value was computed via

propagation of error on the fit covariance matrix parameters. Note that in practice, to
ensure that the covariance matrix Σ was symmetric positive-definite, we set Σ = LLT ,
where the matrix L is upper-triangular with positive values on the diagonal. We then
actually adjusted the parameters L11, L21, and L22 when fitting the single 2D Gaussian
model. Since the radius is defined to be the semi-major axis length of the 95% confidence
ellipse, it follows that

r(real)α =
√

5.991 ·
√
λ1 (38)

where λ1 denotes the largest eigenvalue of Σ. The variance σ2rα was then estimated as the
first two terms of the error propagation equation:



Supplementary Information 15

σrα ≈ σ2L11

(
∂rα
∂L11

)2

+ σ2L21

(
∂rα
∂L21

)2

(39)

where σ2L11
and σ2L21

denotes the variances for L11 and L21, respectively, estimated via our
fitting procedure, and where

∂rα
∂L11

=

√
5.991

2
·
[
η

(
L11L21 −

L2
11

c

)]−1/2
· η
(
L21 −

2L11

c

)
∂rα
∂L21

=

√
5.991

2
·
[
η

(
L11L21 −

L2
11

c

)]−1/2
· ηL11

(40)

In Eq. (40), η ≡ c
acb−a2 , where a and b denote the first and second component, respectively,

of the eigenvector of covariance matrix Σ which corresponds with the largest eigenvalue,
and c and d denote the first and second component of the other eigenvector. Note that
since we had interpolated each spatial RF by a factor of 4, the terms in Eq. 39 were scaled
by a factor of 1

4 to obtain error bar values in units of checkers (see S4 Fig, panels B and
C).

§3.c. Classification of intersection, union & independent monopole modes. We
next categorized the spatial RF of each of the 46 monopole modes as one of three mutually
exclusive types: “Intersection,” “Union”, and “Independent”. A monopole mode α was
classified as having an Intersection-type spatial RF if

r(null)α − r(real)α > Θ (41)

where Θ > 0 denotes a threshold criterion. Similarly, α was classified as having a Union-
type spatial RF if

r(real)α − r(null)α > Θ (42)

Finally, if

|r(real)α − r(null)α | ≤ Θ (43)

then mode α was classified as having an Independent-type spatial RF. In practice, we
tested threshold criterion values of Θ = σrα and Θ = 2σrα , where σrα denotes the standard

deviation of the actual radius r
(real)
α , which was calculated as previously described. To

assess whether the classification of modes obtained using either of these choices for the
threshold criterion was appropriate, we performed a Wilcoxon signed-rank test on the set

of
(
r
(real)
α , r

(null)
α

)
pairs assigned to each of the three categories.

The classification and significance results for each criterion choice are summarized in
Table 1, and shown visually in panels B and C of S4 Fig. For the choice of Θ = 2σrα : 14
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modes were classified as Independent-type, which was supported by a two-sided Wilcoxon
signed-rank test (p = 0.14 > 0.05, i.e. insignificant difference between the actual and null
model radii values); 24 modes were classified as Intersection-type, which was supported
by a left-tailed Wilcoxon signed-rank test (p = 5.96 × 10−8 < 0.01, i.e. the classified
modes had a significantly smaller radius than predicted by the null model); and 7 modes
were classified as Union-type, also supported by a right-tailed Wilcoxon signed-rank test
(p = 0.0039 < 0.01, i.e. the classified modes had a significantly larger radius than predicted
by the null model). For the choice of Θ = σrα : 2 modes were classified as Independent-type,
which was strongly supported (p = 1 > 0.05); 33 modes were classified as Intersection-type,
also strongly supported (p = 1.16× 10−10 < 0.01); and 11 modes were classified as Union-
type, likewise well-supported (p = 0.00049 < 0.01).

Table 1. Monopole Mode RF Classification Results

Θ = rα Θ = 2 · rα
Classification: # of Modes p-value # of Modes p-value

Independent 2 1 14 0.14

Intersection 33 1.16× 10−10 24 5.96× 10−8

Union 11 0.00049 8 0.0039

§3.d. Supplemental figures for the mode analyses.

§3.d.1. Supplementary Figure 3. Noise and dipole analysis results. See pg. 17.

§3.d.2. Supplementary Figure 4. Monopole analysis results. See pg. 18.
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Figure S3. Identification of noise and dipole-type mode spatial receptive fields.
(A) Left : Example smoothed spatial RF of a mode, measured by performing SVD
on the mode-triggered average (MTA) stimulus. Both the 3D surface (top panel) and
heat map representation (bottom panel) are shown. Right : The corresponding best-
fit unconstrained 2D Difference of Gaussians (DoG) model for this example mode; the
corresponding mean-squared error (MSE) is reported at right. (B) Assessment of noise

modes. For each of the 50 Tree HMM modes (x-axis), we computed the ratio SNRα ≡ |yα|σf

(shown on the y-axis), where yα denotes the largest extremum of the observed spatial RF
and σf denotes the estimated standard deviation of the noise for mode α (see text).
Green dashed line denotes the chosen threshold value Θ = 4.5; ratio values above this
threshold criterion are represented by the green shaded region. One mode exhibited an
SNRα value below the chosen threshold, and was consequently excluded from subsequent
analyses. (C) Assessment of dipole-type mode spatial RFs. Each point represents one of
the 49 non-noise modes. For ease of visualization, we normalized each mode’s modeled
spatial RF profile (see Eq. 36). We then identified the extrema of the best-fit 2D DoG
model with the first and second-largest amplitudes via an automatic procedure. Shown
is the value of the extremum with the largest amplitude (denoted “V1”, y-axis) vs. the
value of the extremum with the second-largest amplitude (denoted “V2”, x-axis). Red
solid line denotes the line y = −x, and the red dashed line denotes the bound for the
chosen threshold criterion x

y
< −0.4. Red shaded region denotes the region in which this

criterion is met; modes within this region were categorized as having dipole-type spatial
RFs (blue diamonds). For the remaining modes, the means of the two Gaussians of the
best-fit 2D DoG model were either nearly identical as in a center-surround organization
(green stars), or the second Gaussian merely contributed a negligible “noise blip” (gray
circles). (D) Spatial RF profile, as modeled by the best-fit DoG model (not normalized),
for the three identified dipole-type modes. Red dots denote the first two largest extrema
for each mode.
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Figure S4. Classification of monopole spatial receptive fields. (A) Left :
Smoothed spatial RF of an example monopole mode, measured by performing SVD on the
mode-triggered average (MTA) stimulus. Layout as in S1 Fig. Right : The corresponding
best-fit single 2D Gaussian model for this example mode; the corresponding mean-squared
error (MSE) is reported at right. (B) Classification results obtained when the threshold
criterion Θ = σrα was used, where σrα denotes the estimated standard deviation of the
actual radius for mode α (see Eqs. 38, 39, 40). Each point corresponds with one of the 46
modes which were previously identified as having a monopole spatial RF. Shown on the

x-axis is the value of the radius predicted by the null model, r
(null)
α , for the given mode

(see Eq. 37); the actual value of the radius, r
(real)
α , is shown on the y-axis. Dashed gray

line denotes the line of unity. Each monopole mode was classified as either independent
(yellow circles), intersection-type (black triangles), or union-type (blue stars) based on
the threshold criterion. The p-value obtained upon performing a Wilcoxon signed-rank

test on the set of
(
r
(real)
α , r

(null)
α

)
pairs assigned to each respective category is shown in

the legend (top-left). (C) Classification results obtained when the threshold criterion
Θ = 2σrα was used. Layout is the same as in panel (B).


