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SUMMARY

A key feature of brain plasticity is the experience-
dependent selection of optimal connections, imple-
mented by a set of activity-regulated genes that
dynamically adjust synapse strength and number.
The activity-regulated gene cpg15/neuritin has
been previously implicated in stabilization and matu-
ration of excitatory synapses. Here, we combine two-
photon microscopy with genetic and sensory manip-
ulations to dissect excitatory synapse formation
in vivo and examine the role of activity and CPG15
in dendritic spine formation, PSD95 recruitment,
and synapse stabilization. We find that neither visual
experience nor CPG15 is required for spine forma-
tion. However, PSD95 recruitment to nascent spines
and their subsequent stabilization requires both.
Further, cell-autonomous CPG15 expression is suffi-
cient to replace experience in facilitating PSD95
recruitment and spine stabilization. CPG15 directly
interacts with a-amino-3-hydroxy-5-methyl-4-isoxa-
zolepropionic acid (AMPA) receptors on immature
dendritic spines, suggesting a signaling mode for
this small extracellular molecule acting as an experi-
ence-dependent ‘‘selector’’ for spine stabilization
and synapse maturation.
INTRODUCTION

Use-dependent selection of optimal connections is a key feature

of neural circuit development (Constantine-Paton et al., 1990;

Goodman and Shatz, 1993; Shatz, 1990) and in the mature brain

underlies functional adaptation of sensory maps as well as

learning and memory (Buonomano and Merzenich, 1998; Caroni

et al., 2012). Patterned activity selectively strengthens and

stabilizes some connections while weakening and pruning

others. Experience plays a critical role in biasing the formation
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and stabilization of excitatory synapses that transmit appropri-

ately patterned activity (reviewed in Hua and Smith, 2004),

and N-methyl-D-aspartate (NMDA)-type glutamate receptors

mediate this activity-dependent synapse selection (Gomperts

et al., 2000). NMDA receptor activation engages multiple cellular

pathways required for both synaptic strengthening and estab-

lishing new synapses (reviewed in Cohen and Greenberg,

2008; West and Greenberg, 2011) ultimately implemented

through synaptic insertion of a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA)-type glutamate receptors (re-

viewed in Anggono and Huganir, 2012; Kerchner and Nicoll,

2008). While the myriad of proteins contained in these pathways

may be considered the downstream mediators of experience at

the synapse, no one molecule has been shown to be both

required and sufficient in this respect.

The majority of excitatory connections in the brain are gluta-

matergic synapses located on specialized protrusions called

dendritic spines. In vitro and in vivo studies suggest that newly

formed spines typically lack PSD95 (Cane et al., 2014; De Roo

et al., 2008a; Lambert et al., 2017; Villa et al., 2016), the scaf-

folding protein that clusters and stabilizes glutamate receptors

at the synapse (reviewed in Kim and Sheng, 2004). In organo-

typic slice cultures, the recruitment of GFP-tagged PSD95 has

been shown to be dependent on synaptic activity (De Roo

et al., 2008a) and required for the activity-dependent stabiliza-

tion of excitatory synapses and spines (Ehrlich et al., 2007), so

much so that its presence is an excellent predictor of a spine’s

future stability (De Roo et al., 2008a; Ehrlich et al., 2007) and

mature synaptic function (Ehrlich and Malinow, 2004; Stein

et al., 2003). Thus, PSD95 recruitment is a defining step in excit-

atory synapse maturation.

Cpg15/Nrn1 is an activity-regulated gene whose expression in

the mammalian cortex is experience dependent (Harwell et al.,

2005; Nedivi et al., 1996) and regulated by Ca2+ signaling via

the NMDA receptor (Fujino et al., 2003). It is highly expressed

at developmental times of synapse formation and maturation

(Corriveau et al., 1999; Lee and Nedivi, 2002; Nedivi et al.,

1996).Cpg15 knockout mice show developmental delays in syn-

apse formation, with many dendritic spines initially lacking syn-

aptic contacts (Fujino et al., 2011). These mice also show poor
s.
creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:nedivi@mit.edu
https://doi.org/10.1016/j.celrep.2019.07.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.07.012&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


learning (Fujino et al., 2011) and aberrant plasticity in visual

cortical networks (Picard et al., 2014). Cpg15/Nrn1 encodes a

small glycosylphosphatidylinositol (GPI)-anchored membrane

protein (Naeve et al., 1997; Nedivi et al., 1996; Putz et al.,

2005) that has been suggested to act non-cell autonomously

as an extracellular ligand (Nedivi et al., 1998) and promotes syn-

apse maturation through recruitment of AMPA receptors (Can-

tallops et al., 2000). However, it has no known receptor, and its

mode of action in promoting synapse maturation has been

unknown.

Here, we use multicolor two-photon imaging to delineate,

in vivo, the steps in spine formation, PSD95 recruitment, and

spine and synapse stabilization and determine which of these

steps are experience dependent. We also test the hypothesis

that the activity-dependent gene product CPG15/neuritin is

both required and sufficient for the step in spine and synapse

stabilization that is experience dependent. We find that postsyn-

aptic CPG15 is required cell autonomously for the recruitment

of PSD95 to newly formed spines, and its knockdown occludes

the effect of experience on PSD95 recruitment. Further, induc-

tion of exogenous CPG15 is sufficient to rescue deficits in

PSD95 recruitment during visual deprivation. These results iden-

tify CPG15 as an activity-dependent spine stabilization signal

that acts downstream of spine initiation but upstream of

PSD95 recruitment. To examine how CPG15, an extracellular

GPI-linked protein, can recruit the intracellular synaptic PSD95

scaffold, we follow up on proteomic studies showing a potential

interaction between CPG15 and AMPA receptors (Schwenk

et al., 2012) and show that this interaction is direct. Through

elucidation of CPG15’s mechanism of action, we also clarify a

sequence of molecular events whereby AMPA receptor pres-

ence on immature spines precedes activity-dependent PSD95

recruitment and subsequent spine stabilization and synapse

maturation.

RESULTS

Experience Instructs PSD95 Recruitment to Spines
To resolve in vivo the progression of synapse formation and how

it might be influenced by experience, we used a strategy for

sparsely labeling neurons with three fluorophores: enhanced yel-

low fluorescent protein (eYFP) to visualize cell morphology,

including dendritic spines, PSD95 fused to mCherry to mark

mature excitatory synapses, and Teal-gephyrin to mark inhibi-

tory synapses (Villa et al., 2016). This allows discrimination of

three spine types, spines without PSD95 (PSD95� spines),

spines with only PSD95 (PSD95+ spines), and spines with both

PSD95 and gephyrin, termed dually innervated spines (DISs)

(Villa et al., 2016). The three fluorophores in Cre-dependent con-

structs were co-electroporated in utero at high concentration to

achieve a high incidence of fluorophore co-expression, together

with a limiting amount of Cre plasmid to guarantee sparse label-

ing (Figure 1A). Electroporation into the brain ventricles of embry-

onic day 15.5 (E15.5) mouse embryos and electrode positioning

targeted neural progenitors that give rise to layer 2/3 pyramidal

neurons of primary visual cortex.When pups reached adulthood,

labeled neurons were imaged through a cranial window using a

custom-built two-photon microscope (Villa et al., 2016). The first
two imaging sessions were taken before and after 2 weeks of a

normal light and dark cycle (Figure 1B). Mice were then trans-

ferred to total darkness for 2 weeks, followed by a third imaging

session. After 2 weeks of recovery under a normal light and dark

cycle, cells were imaged a fourth time (Figure 1B).

Imaging a 200-mmcube, we captured the full dendritic arbor of

well-isolated neurons with distinctly resolved dendritic spines,

Teal-gephyrin puncta, and PSD95-mCherry puncta (Figure 1C).

Individual spines were tracked for their appearance or disap-

pearance and categorized based on the presence or absence

of a PSD95 punctum (Figures 1D and S1). Dynamics of

PSD95� spines were similar in both light and dark conditions

(Figure 1E, top panel). PSD95+ spine dynamics were significantly

reduced in the dark but recovered when animals were returned

to normal light and dark conditions (Figure 1E, middle panel).

For both light and dark conditions, dynamics equally repre-

sented gains and losses (data not shown), with percent gain of

PSD95+ spines reduced from 5.6 ± 0.7 in light to 1.6 ± 0.6 in

dark (Figure S1, p < 0.01 repeated-measures ANOVA Tukey’s

post hoc test for multiple comparisons). DISs were extremely

stable in both conditions (Figure 1E, bottom panel), consistent

with our prior findings showing their baseline stability and their

stability in response to monocular deprivation (Villa et al.,

2016). Since new spines are typically PSD95�, these results indi-
cate that visual experience does not influence spine formation,

but rather, their conversion to PSD95+ spines.

CPG15 Removal Occludes the Effect of Experience on
PSD95+ Spine Dynamics
We hypothesized that CPG15, whose visual cortical expression

is responsive to light-driven activity (Nedivi et al., 1996), and is

required for spine stabilization (Fujino et al., 2011) and synaptic

maturation (Cantallops et al., 2000), might act as a molecular

signal linking experience with PSD95 recruitment. If this were

the case, Cpg15 removal should occlude the effect of dark on

the remodeling of PSD95+ spines, but not PSD95� spines, so

that spine remodeling in Cpg15 knockout (KO) mice would be

equivalent in light and dark. Further, spine remodeling in the

Cpg15 KO should also be equivalent to spine remodeling in

wild-type (WT) animals in the dark, when endogenous CPG15

expression is downregulated (Nedivi et al., 1996). To test these

predictions, we applied to Cpg15 KO mice the same labeling

and imaging strategy described above for WT mice (Figures

1A–1C). We found that in Cpg15 KO mice, dynamics of

PSD95� spines were similar in both light and dark conditions

(Figure 1E, top panel), indicating that neither experience nor

CPG15 is required for the emergence and elimination of transient

spines. As predicted, in the case of PSD95+ spines, loss of

CPG15 severely reduced spine dynamics under normal light

conditions (Figure 1E, middle panel), so much so as to occlude

the effect of visual deprivation. In fact, dynamics of PSD95+

spines in the CPG15 KO in the light were similar to those of con-

trol animals in the dark (Figure 1E, middle panel). In the case of

DISs, similar to WT, Cpg15 KO mice had no effect on dynamics

(Figure 1E, bottom panel). These results show that loss of visual

experience or CPG15 has no effect on the remodeling of imma-

ture spines. However, gain and loss of PSD95+ spines require

both experience and CPG15.
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Figure 1. Simultaneous In VivoTrackingofDen-

dritic Spines and Their Synapses during Normal

Visual Experience and Visual Deprivation

(A) Plasmid combination for co-expression of cellular

and synaptic labels in sparsely labeled L2/3 pyramidal

neurons of primary visual cortex.

(B) Experimental timeline.

(C) Maximum Z-projection of an eYFP cell fill (pseu-

docolored red); scale bar, 20 mm. The dendritic

segment in the white box is magnified (middle; scale

bar, 10 mm) and further magnified (green box) to reveal

different spine classes (rightmost panels): PSD95�

(open white arrow), PSD95+ (yellow arrow), and dually

innervated spines containing both PSD95 and ge-

phyrin (DISs; filled white arrow). Scale bar, 2 mm.

(D) Examples of dynamic spines of different cate-

gories. Open white arrow points to a PSD95� spine

that formed and disappeared (top). Yellow arrow

points to a new PSD95+ spine that formed and per-

sisted (middle). Filled white arrow points to a stable

DIS (bottom). Scale bar, 2 mm.

(E) Percentage of dynamic spines (combined gains and

losses) of different classes after 2 weeks of normal vi-

sual experience (light) or 2 weeks in the dark, repre-

sented as mean ± SEM (n = 6 mice; *p % 0.05

**p % 0.01 by two-way ANOVA with Tukey’s post hoc

test for multiple comparisons). IUE, in utero electro-

poration.

See also Figure S1 for separate gains and losses per

spine category.
CPG15 Recruits PSD95 to Nascent Spines
To further examine the link between PSD95 recruitment to newly

formed spines, spine stabilization, and the potential role ofCPG15

in this process, we tracked the formation and the subsequent fate

of new spines by imaging neurons daily for up to 9 days in both

WTandCpg15KOanimals (Figure 2A). As seen for the 2-week im-

aging intervals, the daily rate of spine emergence was identical in

WT and Cpg15 KO mice (Figure 2B), further demonstrating that

CPG15 is not required for new spine formation.

We next tracked the fate of newly formed spines within four

days of their emergence. In WT, most newly formed spines

were either lost within four days (48%) or remained without

PSD95 (37%), with only 15% gaining PSD95 (Figures 2C and

2D). New spines were nearly 20% more likely to be lost in

Cpg15 KO than in WT (66% in KO versus 48% in WT). This

was concomitant with a 5-fold reduction in the rate of PSD95

acquisition (3% in KO versus 15% in WT) (Figures 2C and 2D).

Therefore, CPG15 is required for PSD95 recruitment to nascent

spines, a critical step for spine stabilization and synaptic matura-

tion (De Roo et al., 2008a; Taft and Turrigiano, 2013).

To test directly whether PSD95 recruitment to nascent spines

influences their long-term stability, we looked at cumulative gain

or loss of PSD95+ spines in WT and Cpg15 KO mice over a
1586 Cell Reports 28, 1584–1595, August 6, 2019
14-day period. In WT mice, we observed

0.76 ± 0.24 (day 7) and 1.9 ± 0.4 (day 14)

new PSD95+ spines per 100 mm dendritic

segment as compared to 0.15 ± 0.09

(day 7) and 0.5 ± 0.2 (day 14) in the Cpg15

KO (Figure 2E). Thus, similar to light depriva-
tion in WT mice, Cpg15 KO does not affect new spine initiation

but reduces recruitment of PSD95 to nascent spines, resulting

in their eventual loss rather than stabilization. This results in a

lower overall spine density in the adult Cpg15 KO mice that

can be entirely accounted for by a reduction in the number of

PSD95+ spines (Figures S2A and S2B). Cpg15 KO mice also ex-

hibited a reduction in the loss of PSD95+ spines (Figure S2B),

likely as a homeostatic adaptation to reduced PSD95+ spine

gain. Due to the reduction in gain and loss of PSD95+ spines,

Cpg15 KO hadmore stable PSD95+ spines thanWT (percentage

of stable PSD95+ spines: WT, 88.9 ± 1.1 versus KO, 95.6 ± 1.8;

p = 0.01 by unpaired t test). PSD95� spines, DISs, and inhibitory

synapses are unaffected in the Cpg15 KO (Figures S2A and

S2C–S2E). These data suggest that the reduced spine density

in Cpg15 KO mice is due not to a deficit in initial spine formation

but rather to a specific failure of conversion from nascent

PSD95� to mature PSD95+ spines. Further, the requirement for

CPG15 seems specific to excitatory synapse maturation.

Postsynaptic CPG15 Is Acutely Required for PSD95
Recruitment
These studies were conducted in adult Cpg15 KO mice, which

are known to have several plasticity-related developmental



Figure 2. CPG15 Is Required for PSD95

Recruitment and Stabilization of Nascent

Spines

(A) Experimental timeline. Neurons labeled as in

Figure 1 were imaged daily for up to 9 days and

again on day 14. For a subset, imaging was done on

day 1 and 14.

(B) Rate of spine initiation (i).

(C) Quantification of newly formed spine fate as lost

(ii), remained same (iii), or gained PSD95 (yellow

oval; iv), over a 4-day period. Representative ex-

amples are shown (bottom). Scale bar, 2 mm.

Arrows point to newly formed spines (n = 8 mice

each for wild-type (WT; 159 new spines) and cpg15

KO (145 new spines).

(D) Schematic of excitatory synapse stabilization.

Roughly one new spine emerges per 100 mm

of dendrites every day in both WT and cpg15

KO. However, only 15% of WT and 3% of

Cpg15 KO spines recruit PSD95 within a 4-day

period.

(E) Schematic of mature spine gain (top). Gain of

PSD95+ spines over a 6- and 13-day period

(mean ± SEM; n = 8 and 6 mice for WT and cpg15

KO, respectively). *p < 0.05 by unpaired t test.

See Figure S1 for gains and losses per every spine

and synapse category.
deficits (Fujino et al., 2011; Picard et al., 2014). To confirm

that Cpg15 KO deficits in PSD95 recruitment and spine

stabilization were not secondary to other developmental

issues, we used a floxed Cpg15 mouse line to acutely

delete Cpg15 using an inducible Cre. This sparse CPG15

KO strategy also allowed testing for a pre- or postsynaptic

requirement for CPG15, something not possible in the KO,

where both pre- and postsynaptic cells are CPG15 deficient.

Prior studies on the developmental timing of CPG15 ex-

pression profiles in the visual pathway suggested a pre-

synaptic role for this protein (Corriveau et al., 1999). Consis-

tent with this idea, overexpression of CPG15 in Xenopus

tectal neurons leads to an increase in dendritic arbor elabora-

tion in nearby WT neurons (Nedivi et al., 1998). Furthermore,

CPG15 mRNA and protein have been shown to localize to
Cell R
axons (Cantallops and Cline, 2008; Mer-

ianda et al., 2013; Nedivi et al., 2001).

Despite such strong evidence for a pre-

synaptic role for CPG15, it has also

been shown that postsynaptic overex-

pression of CPG15 in Xenopus tectal

neurons can influence the branching of

presynaptic retinal axons (Cantallops

et al., 2000). Given the uncertainty

regarding whether CPG15 pre- or post-

synaptic expression might be required

for PSD95 recruitment, we used induc-

ible Cre to acutely KO CPG15 not only

in postsynaptic neurons but also in

some of the presynaptic inputs to these

neurons.
The neuronal labeling strategy was similar to the one

described in Figure 1, except that fluorophore expression

was rendered Flp recombinase (Flp) rather than Cre dependent,

because Cre expression would delete Cpg15 immediately after

electroporation in the floxed Cpg15 background (Figure 3A). To

temporally control Cre expression, we used a Cre version

that is induced only upon binding to 4-hydroxytamoxifen

(4-OHT). To identify neurons that received inducible Cre, the

construct bearing the inducible Cre (ERT2-Cre-ERT2, labeled

OHT-Cre) also carried Synaptophysin-TdTomato expressed

from the same promoter (Figures 3A and S3). This construct

was co-electroporated into floxed Cpg15 pups at E15.5 along

with eYFP and PSD95-Teal in dio-cassettes conditional to

Flp, and limiting amounts of Flp (Figures 3A and 3B). All

neurons that receive Flp, eYFP, and PSD95-Teal also receive
eports 28, 1584–1595, August 6, 2019 1587



Figure 3. Postsynaptic CPG15 Is Acutely

Required for PSD95+ Recruitment to Spines

(A) Plasmids for conditional removal of Cpg15 and

neuronal and synaptic labeling in floxed Cpg15

mice. Upon 4-OHT injection, OHT-Cre expressed

from pCAG-Synaptophysin-TdTomato-IRES-OHT-

Cre (SypTdT-IRES-OHT-Cre) will translocate to the

nucleus and delete Cpg15. Presynaptic terminals of

Cre expressing cells will be labeled with Synapto-

physin-TdTomato (Syp-TdT) and will be WT before

OHT injection and KO after. Cell and synaptic la-

beling utilize Flp- rather than Cre-dependent eYFP

and PSD95-Teal expression due to the floxed

background.

(B) Experimental timeline.

(C) Scheme illustrating the labeling and KO strategy.

An imaged neuron expressing a cell fill (red), PSD95

(green oval), and Syp-TdT (blue oval) in its soma and

OHT-Cre. Since the SypTdT-IRES-OHT-Cre is not

Flp dependent, it will express more widely in neigh-

boring layer 2/3 neurons. Boutons (blue ovals) on their

axons (dotted gray line) will be labeled with Syp-TdT

and synapse onto some spines of the labeled neuron.

Since they also express OHT-Cre, these presynaptic

contacts will be WT before OHT injection and KO

after. All other spines will receive unlabeled WT pre-

synaptic contacts regardless of OHT injection.

(D) Representative images of somal eYFP fill (left),

and Syp-TdT (right) for labeled neuron such as

shown in (C). Scale bar, 5 mm.

(E) Dendrites of soma shown in (D) (merged (left),

PSD95 (middle), and Syp-TdT (right)). Scale bars,

2.5 mm.

(F) Schematic of dendritic spines (red) and PSD95

(yellow oval) opposed to an unlabeled (Syp TdT�)
axon (black line) or Syp-TdT+ axon (black line with

blue oval). After 4-OHT, the postsynaptic cell and the

Syp-TdT labeled axons turn KO.

(G) Percent dynamics (gains plus losses) of PSD95+

spines on Syp-TdT labeled postsynaptic neurons is

reduced after 4-OHT injection. This is true, even when counting only PSD95+ spines not apposed by Syp-TdT (presynaptic WT), showing that CPG15 is required

postsynaptically (PSD95+, Pre Syp-TdT�; n = 7 mice) **p < 0.01, ***p < 0.001 by paired t test. Data are represented as mean ± SEM. 4-OHT, 4-hydroxytamoxifen;

IUE, in utero electroporation.

See also Figures S3 and S4.
Synaptophysin-TdTomato/OHT-Cre, and therefore, they are

conditional postsynaptic KOs for CPG15. However, Synapto-

physin-TdTomato/OHT-Cre expression is independent of Flp

and therefore, unlike PSD95-Teal and eYFP, will not be

restricted to Flp-expressing neurons. Consequently, the pre-

synaptic inputs from these neurons to the imaged neurons

will be conditional presynaptic KOs for CPG15 (Figure 3C).

Synaptophysin-TdTomato labeling is restricted to cell bodies

and axons, allowing confirmation of inducible Cre expression

without interfering with dendritic labeling of eYFP cell fill

and PSD95-Teal (Figures 3D and 3E). Before 4-OHT injec-

tion, imaged postsynaptic neurons and all of their inputs

(labeled or unlabeled with Synaptophysin-TdTomato) are

WT (Figure 3F, top). After 4-OHT injection, Cpg15 will be

deleted in all imaged postsynaptic neurons as well as some

of their presynaptic inputs marked with Synaptophysin-

TdTomato. Spines without apposing Synaptophysin-TdTomato

will remain presynaptic WT even after 4-OHT injection (Fig-

ure 3F, bottom).
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The density and dynamics of PSD95� and PSD95+ spines

were comparable to experiments described in Figure 1, despite

the transition to the Flp system for fluorophore expression

and from PSD95-mCherry to PSD95-Teal (Figure S4A). Also,

4-OHT had no influence on PSD95+ spine dynamics (Figures

S4B–S4D).

To test whether acute deletion of Cpg15 diminishes represen-

tation of PSD95+ spine dynamics as seen in Cpg15 KO mice,

we quantified gain in PSD95+ spines over a 2-week period in

neurons expressing YFP, PSD95-Teal, and OHT-Cre (Synapto-

physin-TdTomato) before and after 4-OHT injection (Figures

3B–3F). We found that gain in PSD95+ spines was significantly

reduced after 4-OHT injection (Figure 3G), suggesting that

CPG15 is acutely required for PSD95+ spine remodeling. Sur-

prisingly, when spines receiving a Synaptophysin-TdTomato

contact (from other Cpg15 KO neurons) were excluded from

analysis, PSD95+ spine dynamics were comparable to pre-

exclusion numbers, indicating an unequivocal postsynaptic

requirement for CPG15 in PSD95+ spine remodeling (Figure 3G).



Figure 4. Cell-Autonomous CPG15 Expres-

sion Is Both Necessary and Sufficient

for Experience-Dependent PSD95+ Spine

Remodeling

(A) Plasmid combination for co-expression of

CPG15 and cellular and synaptic labels.

(B) Experimental timeline.

(C) Percent dynamics (combined gains and loss) of

PSD95+ spines in WT mice (n = 6 mice), KO mice

(n = 6 mice), and KO mice with CPG15 over-

expression (KO+CPG15 n = 3 mice).

(D) Constructs for conditional expression of Cpg15

in neurons labeled with cell fill and PSD95. Neuronal

and synaptic labeling was the same as described

for Figure 3 but combined with a plasmid express-

ing CPG15 within a Cre-dependent dio-cassette

and an inducible OHT-Cre plasmid. Upon OHT in-

jection, CPG15 will be induced in the imaged

neuron.

(E) Experimental timeline.

(F) Percent dynamics (combined gains and loss) of

PSD95+ spines in light or dark (n = 6 mice) or dark

with exogenous CPG15 expression (OHT injection)

(n = 5 mice). *p < 0.05, **p < 0.01, ***p < 0.001 by

one-way ANOVA with Tukey’s post hoc test for

multiple comparisons. Data are represented as

mean ± SEM. 4-OHT, 4-hydroxytamoxifen; IUE , in

utero electroporation.

See Figure S5 for controls and Figure S6 for sepa-

rate PSD95+ gains and losses.
To test whether postsynaptic CPG15 is also sufficient to rescue

PSD95+ spine dynamics without a potential presynaptic contri-

bution, we exogenously expressed CPG15 only in the imaged

neuron in a Cpg15 KOmouse. A double inverted Cre-dependent

CPG15 construct was co-electroporated at E15.5 together with

the Cre-dependent fluorophores into pups from Cpg15 KO and

Cpg15+/� crosses, restricting CPG15 expression to the sparsely

labeled neurons (Figure 4A). Electroporated Cpg15 KO pups

were imaged twice, with a 2-week interval between sessions

(Figure 4B). Overexpression of CPG15 in the imaged cell rescued

PSD95+ spine dynamics to WT levels (Figure 4C), demonstrating

that cell-autonomous CPG15 expression is both required and

sufficient for PSD95+ recruitment to spines and their subsequent

stabilization.

Acute CPG15 Expression Is Sufficient to Replace
Experience in Promoting PSD95+ Spine Formation
We next asked whether CPG15 is also sufficient to rescue the ef-

fects of visual deprivation on PSD95 recruitment. To test for

CPG15 sufficiency, we induced expression of exogenous

CPG15 specifically in the dark, when endogenous CPG15 in

WTmice is downregulated and PSD95 recruitment is low. To ex-

press inducible CPG15 in the imaged neurons, we co-electropo-

rated into WTmice the same Flp-dependent fluorophore and Flp

plasmids used above together with a high concentration of

plasmid expressing Cre-dependent CPG15, OHT-Cre (Figure

4D). Labeled neurons are similar to other WT neurons before
4-OHT administration but should express high levels of exoge-

nous CPG15 after 4-OHT (Figure S5). Electroporated mice

were imaged before and after a 2-week period of a normal light

and dark cycle (Figure 4E). Immediately following the second im-

aging session, animals were injected with 4-OHT and transferred

to 2 weeks in the dark, followed by a third imaging session (Fig-

ure 4E). We found that CPG15 expression was sufficient to

rescue PSD95+ spine formation in the absence of visual experi-

ence (Figure 4F). WT cells in the dark show only 36% of PSD95+

spine dynamics as seen in the light condition. Induction of exog-

enous CPG15 inWT cells while animals were in the dark rescued

PSD95+ spine dynamics to 81% of light dynamics (dark versus

dark with CPG15 induction, p < 0.001 by one-way ANOVA with

Tukey’s post hoc test for multiple comparisons) (Figure 4F).

While the gain of PSD95+ spines could be fully rescued by

CPG15, PSD95+ spine loss showed only a partial rescue (Fig-

ure S6). These results show that CPG15 can replace experience

in recruiting PSD95 to spines.

CPG15 Interacts with GluA1 and Is Critical for the
Recruitment of PSD95 to GluA1 Containing Synapses
Since CPG15 is an extracellular molecule, in order for it to initiate

PSD95 recruitment intracellularly, it would potentially need to

work through an intermediary that spans the membrane.

Recently, antibody pull-down studies of the AMPA receptor

identified CPG15 as a possible component of the AMPA receptor

proteome (Schwenk et al., 2012). To confirm this finding and test
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Figure 5. CPG15 Interacts Directly with the

GluA1 AMPA Receptor Subunit and Is Critical

for Recruitment of PSD95 to AMPA-Recep-

tor-Containing Spines

(A) Immunoprecipitation of FLAG-tagged CPG15

co-precipitates HA-tagged GluA1 from HEK293T

cells expressing both tagged proteins. Immuno-

globulin G (IgG) bands are shown to demonstrate

equal amounts of anti-FLAG affinity beads added to

the reaction.

(B) A section of dendrite from WT (left) and Cpg15

KO (right) cultured hippocampal neurons at DIV 14

stained for actin (Alexa Phalloidin-488, green), anti-

PSD95 (blue), and anti-surface-GluA1 (red). Scale

bar, 1 mm.

(C) Categories of spines containing PSD95 and

GluA1, GluA1 alone, PSD95 alone, or neither PSD95

nor GluA1 as a percentage of total spines for each

given time point.

(D) Comparison of spine categories in WT and

Cpg15KO cultures for DIV 10 (left) andDIV 14 (right).

*p < 0.05 by unpaired t test. Data are represented as

mean ± SEM.
if the CPG15-AMPA receptor interaction is direct, we co-ex-

pressed FLAG-tagged CPG15 and hemagglutinin (HA)-tagged

GluA1 in a heterologous system. In HEK293T cells expressing

only HA-GluA1, no AMPA receptor signal was detected after

immunoprecipitation with anti-FLAG affinity beads (Figure 5A,

left). In HEK293T cells co-expressing FLAG-tagged CPG15

and HA-tagged GluA1, immunoprecipitation with anti-FLAG

affinity beads showed robust co-immunoprecipitation of HA-

GluA1, suggesting a direct interaction between CPG15 and the

AMPA receptor (Figure 5A, right).

If the interaction of CPG15 with AMPA receptors is required

for experience-dependent recruitment of PSD95 to synapses,

then one would expect that AMPA receptor presence at young

synapses would precede PSD95 and be unaffected by removal

of CPG15. To examine this sequence of events more closely,

we cultured hippocampal neurons from E16 WT and Cpg15

KO mice and monitored synaptic localization of PSD95 and

the GluA1 AMPA receptor subunit at four separate time points

through culture maturation (Figures 5B and 5C). Our first obser-

vation at 7 days in vitro (DIV) showed that �43% of spines in WT

neurons contain neither PSD95 nor GluA1, 29% contain only
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GluA1, and 9% contain only PSD95, with

as few as 19% containing both PSD95

and GluA1 (Figure 5C, left). In Cpg15 KO

neurons, percentages of the different spine

categories at DIV 7 were not significantly

different at 33%, 31%, 9%, and 27%,

respectively. As neurons matured, the per-

centage of spines containing both GluA1

and PSD95 markedly increased, with the

largest increase occurring between DIV

10 and DIV 14, from 40% to 77%. This in-

crease in mature spines was largely at

the expense of spines containing GluA1

alone, which decreased from 24% to
10%. In the Cpg15 KO cultures, the same trends could be

seen as in theWT cultures; a gradual reduction in spines contain-

ing neither PSD95 nor GluA1, paired with increased recruitment

of both these proteins (Figure 5C, right). However, during the

time interval when the majority of spines recruit PSD95, between

DIV 10 and DIV 14, the proportion of spines containing GluA1

without PSD95 was twice as high in the KO as compared

to WT cultures, recapitulating our in vivo finding that CPG15

is critical for PSD95 recruitment (Figure 5C, right; Figure 5D,

right). These findings further suggest that initial recruitment of

GluA1 precedes recruitment of PSD95 and is unaffected by

Cpg15 KO.

DISCUSSION

In vitro, not only PSD95 recruitment (De Roo et al., 2008a) but

also spine formation (Engert and Bonhoeffer, 1999; Maletic-Sa-

vatic et al., 1999; Nägerl et al., 2004) and spine stabilization (De

Roo et al., 2008a, 2008b) have been shown to be influenced by

neuronal activity. Recently, the introduction of genetically tagged

synaptic scaffolding molecules has enabled researchers to



separately and simultaneously track spine and synapse dy-

namics in vivo (Cane et al., 2014; Gray et al., 2006; Isshiki

et al., 2014; Villa et al., 2016). These studies confirmed that

although the presence of PSD95 is not entirely predictive of

long-term spine stability (Cane et al., 2014), the step in excitatory

synapse formation most closely associated with long-term sta-

bility is the presence of PSD95 (Cane et al., 2014; Villa et al.,

2016). However, how experience facilitates PSD95 recruitment

to synapses has not been established. Here, we show unequiv-

ocally that the recruitment of PSD95 is a definitive visual signa-

ture of synapse and spine stabilization. It is this step rather

than spine initiation that is activity regulated. KO of the activity-

regulated gene product, CPG15, mimics and occludes the effect

of experience on PSD95 recruitment, and CPG15 expression

can on its own replace experience in promoting PSD95 recruit-

ment and synapse stabilization. No other effector molecule

downstream of the NMDA receptor has been shown to be both

required and sufficient for replacing experience in implementing

synaptic structural or functional plasticity.

While excitatory synaptogenesis can occur in the absence of

synaptic activity (Sando et al., 2017; Sigler et al., 2017; Varo-

queaux et al., 2002; Verhage et al., 2000), PSD95 (Béı̈que

et al., 2006; Migaud et al., 1998), or CPG15 (Fujino et al.,

2011), in all cases, the synapses are functionally immature or

deficient, and circuits are operationally suboptimal (Béı̈que

et al., 2006; Fujino et al., 2011; Migaud et al., 1998; Sando

et al., 2017; Sigler et al., 2017). This is consistent with a view

that activity is not required to initiate synapse formation per se

but rather is critical for selecting synapses for maturation and

long-term stabilization.

How do these findings reconcile with previous studies

showing activity-dependent spine formation in vitro (Engert

and Bonhoeffer, 1999; Hill and Zito, 2013; Kwon and Sabatini,

2011; Maletic-Savatic et al., 1999; Nägerl et al., 2004) or even

in vivo (reviewed in Holtmaat and Svoboda, 2009)? Without

exception, these studies were all done prior to recent technical

developments allowing the in vivo visualization and longitudinal

tracking of both tagged PSD95 and spine dynamics (Cane

et al., 2014; Villa et al., 2016). When examining the effect of ac-

tivity or experience on new spine formation in the absence of a

PSD95 label, it is impossible to resolve whether the increase in

spine number is due to an increase in new spine initiation or tran-

sition of nascent spines to stable PSD95+ spines. In the case

where spinogenesis has been shown in vitro to be directly eli-

cited by glutamate uncaging (Hill and Zito, 2013; Kwon and Sa-

batini, 2011), although the induced spines acquire mature

morphology and exhibit electrical responsiveness, their long-

term stability beyond 30 min is not known, and whether or not

they possess PSD95 is unclear. It is also possible that spinogen-

esis is not entirely stochastic but rather locations of glutamate

release (preexisting boutons) favor new spine formation but

long-term spine stability is dependent on experience-induced

neuronal activity.

Studying the role of experience and CPG15 in excitatory syn-

apse stabilization also sheds light on the sequence of events

related to excitatory synapse formation in vivo. Excitatory syn-

apse formation is a multistep process that begins with spine

formation, followed by recruitment of a plethora of synaptic
proteins, including adhesion molecules, the NMDA- and

AMPA-type glutamate receptors, the scaffolding molecules

thought to anchor them at the synapse, as well as adaptor pro-

teins linking the synaptic apparatus to an array of downstream

second messenger signaling pathways (reviewed in McAllister,

2007; Waites et al., 2005). While there is a rich literature

describing the molecular composition of excitatory synapses

and specific roles of its individual components (reviewed in

Sheng and Kim, 2011; Li and Sheng, 2003; Scannevin and Hu-

ganir, 2000; Sheng and Hoogenraad, 2007; S€udhof, 2018), few

of the steps in synapse assembly have been examined in vivo.

Adhesion molecules, specifically neuroligins, were initially iden-

tified by in vitro assays as synaptogenic (Chih et al., 2005;

Scheiffele et al., 2000), but their in vivo examination suggested

their up- and downregulation does not influence synapse initia-

tion but rather insertion of NMDA receptors (Chubykin et al.,

2007; Varoqueaux et al., 2006). The NMDA receptor has been

considered an early synaptic inhabitant, given the preponder-

ance of NMDA only ‘‘silent synapses’’ early in development

and the low AMPA to NMDA ratios at young synapses (reviewed

in Hanse et al., 2013; Kerchner and Nicoll, 2008). Insertion of

AMPA receptors at these synapses has been associated with

activity-dependent synapse maturation (Isaac et al., 1995;

Liao et al., 1995), and the molecule shown to be most important

for AMPA receptor accrual at synapses is PSD95 (Bats et al.,

2007; Béı̈que et al., 2006; Chen et al., 2011; Ehrlich and Mali-

now, 2004; Schnell et al., 2002). In turn, cell adhesion molecules

such as neuroligin-I, netrin-G-ligand-I, and ephrin-B3 have

been shown to physically interact with PSD95, facilitating its

recruitment to synapses (reviewed in Han and Kim, 2008). The

common logical sequence to these events would therefore be

that once spines form, adhesion molecules help the recognition

and alignment of pre- with postsynaptic partners in an activity-

independent manner (Scheiffele et al., 2000). NMDA receptors

and early scaffolding molecules, such as Sap102 and SAP97

(Elias et al., 2008; Lambert et al., 2017), are then recruited, facil-

itating insertion of a small number of rather unstable AMPA re-

ceptors (reviewed in Groc et al., 2006). This young immature

synapse can form within minutes of spine formation and sup-

port synaptic transmission (Lambert et al., 2017; Zito et al.,

2009). By virtue of the NMDA receptor’s property as a

coincidence detector, salient activity can then trigger its matu-

ration through recruitment of PSD95 and AMPA receptors

(Ashby and Isaac, 2011; De Roo et al., 2008a; Wu et al., 1996;

Zhang et al., 2015). This last step in particular can now be revis-

ited in light of our findings. We propose a model (Figure 6)

whereby new spines are initiated across the dendritic arbor

in an experience-independent manner, although glutamate

release may bias their emergence sites. These nascent spines

acquire an immature synaptic structure with a small number

of unstable AMPA receptors that can support transmission.

Such spines that have an immature synapse lacking PSD95

are transient in nature and are likely to be eliminated within a

few days (Cane et al., 2014; Villa et al., 2016), except in the

presence of salient activity. Coincident pre- and postsynaptic

activity induces expression, and/or perhaps insertion, of

CPG15 downstream of NMDA receptor activation. Since

CPG15 is an extracellular GPI-linked protein, its effect on
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Figure 6. A Model for Experience-Dependent

Synapse Stabilization by CPG15

From top: a nascent spine emerging from a dendrite

(red) tests an opportunity to synapse with an axonal

(black line) bouton (open oval). This transient spine

acquires immature synaptic machinery, including

NMDA-type (blue) and some AMPA-type glutamate

receptors (purple ovals) that are unstable, anchored

by a non-PSD95 scaffold. In the absence of salient

experience, these spines are lost (right fork). In the

presence of experience-dependent correlated ac-

tivity (yellow lightning bolt), GPI-anchored CPG15

(green oval) expressed in postsynaptic neurons in-

teracts with AMPA receptors. This interaction re-

cruits PSD95 (yellow oval) to immature, transient

spines and stabilizes them. PSD95 then recruits

additional AMPA receptors, leading to mature and

stable synapses.
PSD95 recruitment is implemented through an interaction with

AMPA receptors, suggesting that early AMPA receptors at

immature synapses are critical to the recruitment of PSD95.

This is consistent with the accepted view that PSD95 recruit-

ment, in turn, promotes further insertion of AMPA receptors to

generate not only structurally stable but also functionally

mature synapses.

Recently, small extracellular proteins have emerged as impor-

tant players in synaptogenesis through their interactions with

larger transmembrane proteins (Pandya et al., 2018; Singh

et al., 2016; Uemura et al., 2010). Similar to these proteins,

CPG15 does not behave like a traditional ligand with its own

cognate receptor. Rather, CPG15 directly interacts with the

AMPA receptor to facilitate its downstream interaction with

PSD95. Unlike these other extracellular synaptic mediator mole-

cules that are secreted, the cell-autonomous postsynaptic

requirement for CPG15 suggests that it acts in a membrane-

bound form and that its GPI membrane anchoring enables its

interaction with AMPA receptors. GPI-anchored proteins are

known to be enriched in lipid rafts (reviewed in Mayor and Riez-

man, 2004), and both PSD95 and AMPA receptors have been

shown to be part of lipid rafts at synapses (Hering et al., 2003;

Hou et al., 2008).

CPG15/neuritin has been shown to activate the insulin recep-

tor and fibroblast growth factor pathways (Shimada et al., 2016;

Yao et al., 2012). Its expression has been shown to positively

affect axonal regeneration in neuromuscular disorders (Akten

et al., 2011) and neurite outgrowth after ischemia (Zhao et al.,

2017) and ameliorate depression associated with chronic stress

(Kojima et al., 2005; Son et al., 2012. Outside the nervous sys-

tem, CPG15 has been implicated in hepatocyte maturation and
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melanoma migration (Bosserhoff et al., 2017). It would be inter-

esting to consider that given its ubiquitous expression,

CPG15’s role in synapse stabilization may be critical for synaptic

regulation by extracellular factors other than activity and that

it may serve as an adaptor to receptors other than AMPA-

type glutamate receptors to perform diverse cell-type-specific

functions.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti dsRed Clontech Cat # 632496; RRID:AB_10013483

Rabbit polyclonal anti GluR1 EMD Millipore Cat # PC246; RRID:AB_564636

Chicken polyclonal anti MAP2 Novus Biological Cat # NB300-213; RRID:AB_2138178

Mouse monoclonal anti PSD95 ThermoFisher Cat # MA1-046; RRID:AB_2092361

Mouse monoclonal anti FLAG M2 Sigma-Aldrich Cat # F3165; RRID:AB_259529

Mouse monoclonal anti HA.11 Biolegend (previously

Covance)

Cat # 901513; RRID:AB_2565335

Goat anti Rabbit secondary antibody – Alexa Fluor 555 ThermoFisher Cat # A21428; RRID:AB_2535849

Goat anti Mouse secondary antibody – Alexa Fluor 647 ThermoFisher Cat # A21235; RRID:AB_2535804

Goat anti Chicken secondary antibody – Alexa Fluor 555 ThermoFisher Cat# A21437; RRID:AB_2535858

Phalloidin-488 – Alexa Fluor ThermoFisher Cat # A12379; RRID:AB_2315147

Anti Rabbit IgG Antibody DyLight 680 Rockland Cat # 610-144-002-0.5; RRID:AB_11181436

Anti Mouse IgG Antibody DyLight 800 Rockland Cat # 610-145-002-0.5; RRID:AB_11182794

EZview Red ANTI-FLAG� M2 Affinity Gel Sigma Cat# F2426-1ML; RRID: AB_2616449

Bacterial and Virus Strains

One Shot STBL3 chemically competent E.coli ThermoFisher Cat # C737303

Chemicals, Peptides, and Recombinant Proteins

4-hydroxy Tamoxifen Sigma-Aldrich H7904

Experimental Models: Cell Lines

HEK293T Cells N/A N/A

Experimental Models: Organisms/Strains

Mouse: cpg15flox/+ Fujino et al., 2011 N/A

Mice: cpg15�/�; cpg15+/� cpg15+/+ Fujino et al., 2011; The

Jackson Laboratory

Stock No: 018402

Mouse: B6.Cg-Gt(ROSA)26Sortm6(CAG ZsGreen1)Hze/J The Jackson Laboratory Stock No: 007906

Oligonucleotides

Primers for ERT2CreERT2: This paper N/A

50 ATAGCCCCACAACCATGGCTGGAGACATGAG30

50TAGGTCGCGGCCGCTATCAAGCTGTGGCAGG30

Primers for Synaptophysin TdTomato This paper N/A

50ACAGTACAATTGCCGGGTGAGCCGCCACCATGGACGTG30

50TACATCCCCGGGCTACTTGTACAGCTCG30

Primers for Cpg15-Ires2 This paper N/A

50ACAGTAGCTAGCGCCGCCACCATGGGACTTAAGTTGAACG30

50ATCCAGACCGGTATTATCATCGTGTTTTTCAAAGG30

Primers for TdTomato This paper N/A

ATCCAGACCGGTGCCACAACCATGGTGAGCAAGGGCGAGG

TACACTGGCGCGCCTTACTTGTACAGCTCG

Recombinant DNA

pFUdioeYFPW Villa et al., 2016 RRID:Addgene_73858

pFudioTealgephyrinW Chen et al., 2012 RRID:Addgene_73918

pFudioPSD-95mCherryW Villa et al., 2016 RRID:Addgene_73919

pCAG-ERT2CreERT2 Matsuda and Cepko;

2007

RRID:Addgene_13777

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pPGKFLPobpA Raymond and Soriano;

2007

RRID:Addgene_13793

pSIN-W-PGK-Cre Subramanian and

Morozov, 2011

RRID:Addgene_101242

pAAV-EF1a-fio-H2B-LSS-mKate2 Jerry Chen N/A

pFudioFRTPSD-95TealW This paper N/A

pCAG-Synaptophysin-TdTomato-IRES2-OHT-Cre This paper N/A

pCMV-Cpg15-IRES2-GFP This paper N/A

pCMV-Cpg15-IRES2-OHT-Cre This paper N/A

pCMV-Cpg15-IRES2-OHT-Cre This paper N/A

pCAG-Cpg15-IRES-OHT-Cre. This paper N/A

Ai34 Madisen et al., 2012 RRID:Addgene_34881

pCAG-Synaptophysin-TdTomato-IRES2-OHT-Cre This paper N/A

pFudio-AscI-AgeI-Nhe1W Villa et al., 2016 N/A

pFudio-Cpg15-IRES2W This paper N/A

pFudio-Cpg15-IRES2- TdTomatoW This paper N/A

pRK5-HA-GluA1 This paper N/A

pRK5-Flag-CPG15 This paper N/A

Software and Algorithms

4D point tracking system, ObjectJ Villa et al., 2016 N/A

ImageJ NIH https://imagej.nih.gov/ij/

Neurolucida 360 MBF Biosciences https://www.mbfbioscience.com/

neurolucida360

Graphpad Prism Graphpad https://www.graphpad.com/scientific-

software/prism/

SPSS IBM https://www.ibm.com/analytics/spss-

statistics-software

Microsoft Excel Microsoft N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Elly Nedivi

(nedivi@mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All animal procedures were approved by the Massachusetts Institute of Technology Committee on Animal Care and meet the NIH

guidelines for the use and care of vertebrate animals. Animals were housed in the Association for Assessment and Accreditation

of Laboratory Animal Care International (AAALAC) accredited facility at MIT. TheCpg15 KOmouse line (Fujino et al., 2011) wasmain-

tained by breeding heterozygous (Het) males and females.WTmales and females (to obtainWTmale pups for cranial windows) or Het

males and KO females (to obtain KO male pups for cranial windows) were crossed to generate WT and Het timed pregnant females

for in utero electroporation. For acute Cpg15 deletion experiments, floxed Cpg15 males and females were used to generate floxed

Cpg15 pups. Breeding cages typically had onemale and two female mice. Males and females were housed separately after weaning

with a maximum of five mice in a standard home cage. Ai6 mice (Jackson # 007906) were used for testing inducible Cre mediated

recombination at a genomic locus. All mice were of C57BL/6 background. In utero electroporations were performed on E15.5 – E16.5

embryos from3 – 5months old femalemice. Cranial windowswere performed on�2months oldmalemice. Following cranial window

surgery mice were individually housed.

Primary neuron cultures
Hippocampal neurons were prepared from littermates of E16 cpg15 WT and KO embryos obtained from a Het x Het crosses.

Embryos of both sexes were genotyped while hippocampi from individual mice were prepared for culture by digestion with Trypsin,
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followed by cell trituration, counting, and seeding onto 12mm glass coverslips pre-coated with poly-L-lysine. Cells were plated in

Neurobasal A media containing 1% Glutamax and 10% fetal calf serum. After 3h, media was changed to Neurobasal A containing

2%B27 supplement and 1%Glutamax. After 7 days in vitro, 1 mMarabinofuranosylcytosine was added to stop glial growth, and cells

were cultured for up to 17 days.

HEK293T cells
HEK293T cells (female) were cultured on 10cm or 6cm tissue culture dishes (Falcon) in DMEM high glucose media (HyClone) con-

taining penicillin/streptomycin, L-glutamine, 1mM pyruvate and 10% fetal bovine serum.

METHOD DETAILS

DNA constructs
The Cre dependent eYFP, Teal-gephyrin and PSD95-mCherry plasmids (pFUdioeYFPW, pFudioTealgephyrinW and

pFudioPSD95mCherryW, respectively) and the Cre plasmid (pSIN-W-PGK-Cre) have been previously described (Chen et al.,

2012; Subramanian et al., 2013; Villa et al., 2016). Faithful expression of the fluorescently labeled gephyrin and PSD95 synaptic

markers was previously validated, and shown to have no effect on spine, inhibitory synapse, or PSD95 densities or dynamics

(Chen et al., 2012; Subramanian et al., 2013; Villa et al., 2016) . The plasmids expressing OHT-Cre (pCAG-ERT2CreERT2; Addgene

plasmid # 13777 (Matsuda and Cepko, 2007)), and Flp recombinase (pPGKFLPobpA; Addgene plasmid # 13793 (Raymond and Sor-

iano, 2007)) were gifts from Connie Cepko and Phillippe Soriano, respectively. To generate Flp dependent constructs in the same

backbone as the Cre constructs, we first replaced mKate2 with eYFP (from pFudioeYFP) between Asc1 and Nhe1 sites of pAAV-

EF1a-fio-H2B-LSS-mKate2, a plasmid with FRT sites in a double inverted orientation (a gift from Jerry Chen). Next, the entire cassette

containing FRT sites and eYFPwas used to replace loxP sites and eYFP between BamHI and EcoRI sites in pFudioeYFPW. The eYFP

between the AscI and NheI sites in the resultant plasmid, pFudioFRTeYFPW, was replaced with PSD95-Teal, which was amplified

with additional NheI and MluI sites, to generate pFudioFRTPSD95TealW.

The pCAG-Synaptophysin-TdTomato-IRES2-OHT-Cre plasmid was made as follows. ERT2CreERT2 (OHT-Cre) was amplified

from pCAG-ERT2CreERT2 with BstXI and Not1 site containing primers and cloned between the BstXI and Not1 sites of pCMV-

Cpg15-IRES2-GFP (a gift from Tadahiro Fujino), after removingGFP, to generate pCMV-Cpg15-IRES2-OHT-Cre. Next, the CAG pro-

moter fragment between Ase1and EcoR1 sites from pCAG-ERT2CreERT2was used to replace the CMVpromoter between the same

sites in pCMV-Cpg15-IRES2-OHT-Cre to generate pCAG-Cpg15-IRES-OHT-Cre. Finally, CPG15 between the EcoRI and XmaI sites

was replaced with Synaptophysin-TdTomato, which was amplified from the plasmid Ai34 (Addgene plasmid# 34881 (Madisen et al.,

2012), a gift from Hongkui Zheng) with primers containing MfeI and XmaI sites, to generate pCAG-Synaptophysin-TdTomato-IRES2-

OHT-Cre.

To generate Cre dependent Cpg15, the Cpg15-IRES2 fragment was amplified using primers with added AgeI and Nhe1 sites and

cloned between the corresponding sites in pFudio-AscI-AgeI-Nhe1W (Villa et al., 2016)to create pFudio-Cpg15-IRES2W. Next,

TdTomato was amplified using primers with added AgeI and AscI sites and cloned between these sites in pFudio-Cpg15-IRES2W

to create pFudio-Cpg15-IRES2-TdTomatoW.

Plasmids for GluA1 expression in co-immunprecipitation experiments were generated by cutting prk5-GluA1-EGFP (gift from R.

Huganir) with MluI, and replacing the EGFP tag after the GluA1 signal sequence with a HA tag. Prk5-CPG15-Flag was generated

by cutting prk5-GluA1-EGFP (gift fromR. Huganir) withMluI andHindIII and replacing EGFP-GluA1with CPG15-Flag amplified ampli-

fied from pIRES-EGFP-CPG15-Flag (Putz et al., 2005).

Surgical Procedures
In utero electroporation was performed as described previously (Villa et al., 2016). E15.5 embryos fromWT, Het, floxed Cpg15 or Ai6

mice were injected with 1 mL of appropriate plasmids mixed with 1% fast green into the right lateral ventricle using a 32 gauge

Hamilton syringe (Hamilton company). A pair of platinum electrodes (Protech International) placed to target visual cortex was

used to provide 5 pulses of 36 V (50 ms duration at 1 Hz) from a square wave electroporator (ECM830, Harvard Apparatus). To

achieve sparse labeling optimal for single neuron imaging with high incidence of fluorophore co-expression, we used high molar

ratios of fluorophores and limiting amounts of recombinase. For labeling both PSD95 and gephyrin in WT and KO neurons, each em-

bryo was injected with 0.7 mg pFudioeYFPW, 0.8 mg pFudioPSD95mCherryW, 0.4 mg pFudioTealgephyrinW and 0.06 mg of pSIN-W-

PGK-Cre plasmids. For acute Cpg15 deletion experiments, each embryo was injected with 0.7 mg pFudioFRTeYFPW, 0.4 mg

pFudioFRTPSD95TealW, 0.03 mg pPGKFLPobpA and 1 mg pCAG-Synaptophysin-TdTomato-IRES2-OHT-Cre plasmids. For induc-

ible CPG15 experiments, each embryo received 0.7 mg pFudioFRTeYFPW, 0.4 mg pFudioFRTPSD95TealW, 0.03 mg pPGKFLPobpA,

0.8 mg each of pCAG-Ert2-Cre-Ert2 and pFudioCPG15IRESTdTomatoW plasmids.

Adult male pups (�P50-60) born after in utero electroporation were implanted with a 5 mm glass coverslip replacing a skull area

over the occipital cortex in the right hemisphere as described (Villa et al., 2016). Mice were housed individually with Sulfamethoxazole

(1 mg/ml) and trimethoprim (0.2 mg/ml) in the drinking water to retain optical clarity of the implanted windows (Lee et al., 2006).
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Optical intrinsic signal imaging
�10-14 days after cranial window surgery, visual cortex was identified through intrinsic signal imaging as described previously (Villa

et al., 2016). Briefly, animals weremildly anesthetized with 0.75%–1% isoflurane, restrained using a headmount, and placed facing a

high refresh rate monitor at a distance of 25 cmwith a horizontal bar (5� in height and 73� in width) drifting upward with a periodicity of

12 s for 60 s. Images were obtained continuously under 610 nm illumination with an intrinsic imaging system (LongDaq Imager,

Optical Imaging Inc.) through a 2.5X/0.075 NA objective (Zeiss). Cortical intrinsic signal was computed by extracting the Fourier

component of light reflectance changes matched to stimulus frequency from 4x4 spatially binned images. The fractional change

in reflectance represents response magnitude, and the magnitude maps were thresholded at 30% of the peak-response amplitude.

In vivo two photon imaging
Following cranial window surgery, mice were allowed to recover for 2 weeks and then screened for labeled neurons in the visual cor-

tex that were expressing all fluorophores. Well-isolated neurons were imaged daily or every two weeks depending on the experi-

mental timeline. Mostly, one cell per mouse was imaged from anesthetized (1%–1.25% isoflurane) head fixed mice using a custom

built two photon microscope. For inducible CPG15 experiments, synapses from more than one cell within the same imaging field

were analyzed for eachmouse. For neurons expressing YFP, Teal-gephyrin and PSD95-mCherry, the three fluorophores were simul-

taneously excited with a Mai Tai HP Ti:Sapphire laser (Spectra-Physics) at 915 nm to excite eYFP and Teal and a Chameleon

compact OPO (Coherent) at 1,085 nm to excite mCherry. For neurons expressing YFP and PSD95-Teal with or without Synaptophy-

sin-TdTomato, excitation was delivered by Mai Tai HP alone at 915nm. In experiments with Synaptophysin-TdTomato expression,

cells were carefully chosen to have no overexpression of Synaptophysin, as judged by weak somal expression and the lack of den-

dritic synaptophysin puncta. A 192x192x200 mmneuronal volume at 250 nm/pixel XYwas acquired for each cell by scanning the laser

beams using galvanometric XY-scanning mirrors (6215H, Cambridge Technology). 0.9 mm/frame Z-resolution was achieved using a

piezo actuator (Piezosystem, Jena). The output power from the 20X/1.0 NA water immersion objective (W Plan-Apochromat, Zeiss)

was set to 50 mW. The emission signals were collected using the same objective, passed through an IR blocking filter (E700SP,

Chroma Technology), and spectrally separated using dichroic mirrors at 520 nm and 560 nm. Emission signals were simultaneously

collected with three independent PMTs after passing through the appropriate bandpass filters (485/70, 550/100 and 605/75).

Data analysis
Two photon raw data was processed for spectral linear unmixing as described previously (Villa et al., 2016) and the images were

converted to a RGB image Z stack using MATLAB and ImageJ. Dendritic spines, PSD95, and gephyrin in dendritic segments located

�30mmor farther from the cell somawere scoredmanually with a customwritten 4D point tracking system implemented in Fiji using a

modified version of ObjectJ plugin (Villa et al., 2016). Analysis was performed blind to genotype or experimental conditions. Spines

projecting in the Z axis were excluded from analysis. Gephyrin puncta were scored as synapses if they were at least 3x3 pixels or 8-9

clustered pixels and PSD95 puncta were scored as synapses if they were at least 2x2 pixels or 4-5 clustered pixels. In both cases,

signal had to be present in two consecutive Z frames with average signal intensity at least four times above shot noise. We have pre-

viously confirmed using electron microscopy that our scoring of gephyrin and PSD95 faithfully represents inhibitory and excitatory

synapses, respectively (Villa et al., 2016).

Percent dynamics were calculated as the fraction of synapses that appeared or disappeared between two consecutive sessions

and calculated as ((Ngained+Nlost)/(N1total+N2total)) X 100, where N1 and N2 represent total number of the same category of synapses

in previous and next sessions, respectively. Ngained represents number of new synapses and Nlost represents the number of preex-

isting synapses that disappeared. Percentage gain was calculated as (Ngained/N2total) X 100 and percentage loss was calculated as

(Nlost/N1total) X 100. Gain or loss per 100 mm was calculated as (Ngained/total dendritic length) X 100 and (Nlost/total dendritic length)

X 100, respectively. For the light deprivation experiments, a total of 1152 spines (697 PSD95+, 130 DIS and 325 PSD95 negative

spines) from 2304 mm of dendrites from 6 WT mice and 853 spines (346 PSD95+, 187 DIS and 320 PSD95 negative spines) from

2322 mm of dendrites from 6 KO mice were analyzed. For the daily imaging experiments to calculate daily or weekly dynamics,

1330 spines (796 PSD95+, 204 DIS and 330 PSD95 negative spines) from 2960 mm of dendrites from 8 WT mice and 1067 spines

(527 PSD95+, 225 DIS and 315 PSD95 negative spines) from 3193 mm of dendrites from 8 KO mice were analyzed. For acute

Cpg15 deletion experiments, 1460 PSD95+ spineswere analyzed from 3464 mmof dendrites from 7 floxedCpg15mice. 20%of these

spines overlapped with Synaptophysin-TdTomato and were excluded from analysis to isolate the role of postsynaptic CPG15. For

exogenous CPG15 expression, 1108 PSD95+ spines were analyzed from 2508 mm of dendrites from 5 WT mice.

Wide-field fluorescence images of 100 mm dendritic sections from cultured hippocampal neurons were obtained using a Nikon

epifluorescent microscope using a 40x objective and Spot Software. Quantification of spine density and presence of surface

GluA1 and PSD95 was conducted using ImageJ software. Dendritic spines labeled with Phalloidin-488 were identified and deter-

mined to contain surface-labeled GluA1 or PSD95 by the presence of puncta above background > 5x5 pixels. Three or 4 separately

prepared cultures per time point were imaged. ForWT cultures: 246, 990, 2004 and 843 spines were analyzed for DIV 7, 10, 14 and 17

time points, respectively. For KO cultures: 213, 606, 2593 and 1054 spines were analyzed for DIV 7, 10, 14 and 17 time points,

respectively.

Statistical analyses were performed using t test, repeated-measures ANOVA, or ANOVA with Tukey’s posthoc test for multiple-

comparisons. Sample size for in vivo experiments represents number of mice and for in vitro experiments represents number of
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independently prepared cultures. Sample sizes were estimated based on comparable previously published literature. p value < 0.05

is considered significant. *, **, *** represents p values < 0.05, 0.01 and 0.001, respectively.

4-hydroxytamoxifen (4-OHT) preparation and administration
4-OHT (Sigma) was dissolved in 100%ethanol by shaking at 37�C tomake a 20mg/ml stock. For administering 50mg/kg bodyweight

of 4-OHT, the appropriate stock volume was mixed with �200-250 ml corn oil (Sigma) by vortexing. Ethanol was removed using

speedvac and the drug was delivered through intraperitoneal injection.

Immunohistochemistry
Brains were fixed with 4% Paraformaldehyde through transcardial perfusion and sectioned at 50 mm thickness using a vibratome.

Sections were blocked with 10% Normal goat serum in 1% Triton X-100/PBS for 2 hours, then incubated with rabbit Dsred antibody

(Clontech; 1:500 dilution; Cat# 632496; RRID:AB_10013483) overnight, and washed with PBS. After further incubation with Alexa

Fluor 555 conjugated goat-anti-rabbit secondary antibodies (Thermo Fisher Scientific; 1:400; Cat # A21428; RRID:AB_2535849),

and washing, the slices were mounted on slides using Fluoromount-G (Southern Biotech). Images were acquired using an upright

fluorescence microscope (Nikon).

Immunocytochemistry of cultured neurons was performed by first isolating coverslips containing hippocampal neurons at DIV 7,

10, 14 or 17. Cells were surfaced-labeled with 10 mg/mL rabbit anti-GluA1 primary antibody (Calbiochem; Cat# PC246;

RRID:AB_564636), or chicken anti-MAP2 (negative control; Novus Biologicals; Cat# NB300-213; RRID:AB_2138178) for 15 min at

37C, then washed with PBS and fixed in 4% paraformaldehyde, 4% sucrose solution for 4 min at room temperature. Cells

were then permeabilized with 0.25% Triton X-100 for 4 min at room temperature, washed with PBS, and blocked in 1% BSA

for 1 hour. Coverslips were incubated in 1% BSA containing 2 mg/mL mouse anti-PSD95 (ThermoFisher; Cat# MA1-046;

RRID:AB_2092361) for 2 hours at room temperature, washed in PBS, and incubated in 1% BSA containing Alexa Fluor Phalloidin-

488 (1:500; ThermoFisher Cat # A12379; RRID:AB_2315147), Alexa Fluor anti-rabbit 555 (1:500; ThermoFisher Cat # A21428;

RRID:AB_2535849) or anti-chicken 555; (1:500; ThermoFisher Cat# A21437; RRID:AB_2535858), and Alexa Fluor anti-mouse 647

(ThermoFisher Cat # A21235; RRID:AB_2535804) for 1 hour at room temperature. Coverslips were washed and mounted in Fluoro-

mount G (Southern Biotech). Images were acquired using an upright fluorescence microscope (Nikon).

Co-Immunoprecipitation
HEK293T cells were transfected with calcium-phosphate for expression of HA-tagged GluA1 (prk5-HA-GluA1) and Flag-tagged

CPG15 (prk5-CPG15-Flag). HEK293T cells were plated on 6cm culture dishes at a medium density (2x106 in 5mL) and allowed to

grow for 24 hours. One microgram of the HA-GluA1 plasmid and a molar equivalent of Flag-CPG15 plasmid was transfected in a

mixture of 0.1X TE (pH8.0), 2x HBSS (pH 7.40) and CaCl2. A GFP-expression vector was included to visualize transfection efficiency.

HEK293T cells either received HA-GluA1 alone or with Flag-CPG15, with varying amounts of GFP-expression vector to keep molar

ratios equal. Cells were lysed in buffer containing 100mMNaCl and 1%Triton X-100 for 20min, lysates were spun at 14,000rpm at 4C

for 30min, and lysates were coupled to 40 mL EZview anti-FlagM2 Affinity Gel (Sigma) for 2 hours at 4C. Beads were washed 3x5min

in lysis buffer and eluted in 1X SDS sample buffer for 10min at 65C. Samples were run using SDS-PAGE and probed using rabbit anti-

HA (Covance; 1:2000; RRID:AB_2565335) and mouse anti-Flag (Sigma; 1:2000; RRID:AB_259529). Blots were developed using an

Odyssey (Li-Cor) infrared scanner after staining with secondary anti-mouse IgG antibody DyLight 800 (Rockland; 1:10 000;

RRID:AB_11182794), or respectively, anti-rabbit IgG antibody DyLight 680 (Rockland; 1:10 000; RRID:AB_11181436).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical methods are specified in each figure legend, in the Methods Details section, and in relevant places in the results section.

Statistical methods used are Student t test, repeated-measures ANOVA and one way ANOVA with post hoc Tukey test for multiple

comparisons. SPSS, Graph pad Prism and Microsoft excel were used for statistical and data analyses.

DATA AND CODE AVAILABILITY

The datasets supporting the current study have not been deposited in a public repository but will be available from the corresponding

author on request. The code for object 4D point tracking system implemented in Fiji can be obtained by contacting nedivi@mit.edu.
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